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Abstract— In this paper we present a state estimation method
based on an inertial measurement unit (IMU) and a planar
laser range finder suitable for use in real-time on a fixed-
wing micro air vehicle (MAV). The algorithm is capable of
maintaing accurate state estimates during aggressive flight in
unstructured 3D environments without the use of an external
positioning system. Our localization algorithm is based on an
extension of the Gaussian Particle Filter. We partition the state
according to measurement independence relationships and then
calculate a pseudo-linear update which allows us to use 20x
fewer particles than a naive implementation to achieve similar
accuracy in the state estimate. We also propose a multi-step
forward fitting method to identify the noise parameters of the
IMU and compare results with and without accurate position
measurements. Our process and measurement models integrate
naturally with an exponential coordinates representation of the
attitude uncertainty. We demonstrate our algorithms experi-
mentally on a fixed-wing vehicle flying in a challenging indoor
environment.

I. INTRODUCTION

Developing micro air vehicles that approach the maneuver-

ability and speed of birds flying through urban environments

poses a number of challenges for robotics researchers in

terms of planning, control, and state estimation. Recent

work has demonstrated systems that can perform impressive

acrobatics [5] and other control feats [15], [16], however such

systems are completely reliant on extremely accurate state

estimates provided by external camera arrays. In contrast,

vehicles that are capable of flight using state estimates

computed from onboard sensor data are either confined to

wide open areas without obstacles, or slow-moving hovering

vehicles such as quadrotors [2], [9].

The wide disparity between what is possible in terms of

agile flight with an external positioning system and what

has been demonstrated with onboard sensing suggests that

state estimation from onboard sensors is indeed a significant

challenge in extending the capabilities of MAVs in real world

environments. In addition to providing good estimates of

the system mean, the state estimation algorithm should also

accurately represent uncertainty so that control and planning

algorithms can be appropriately cautious around obstacles

and other state constraints [3].

This paper presents a state estimation method that is

suitable for use in real-time on a fixed wing MAV maneuver-

ing through a cluttered environment. Our system leverages

an inertial measurement unit (gyros and accelerometers)

and a planar laser range finder in a filtering framework

that provides the accuracy, robustness, and computational

efficiency required to localize a MAV within a known 3D

occupancy map.

Fig. 1. Fixed wing experimental platform flying indoors localizing using
an onboard laser range scanner and inertial measurement unit.

In order to efficiently project the nonlinear laser measure-

ment update of the vehicle position back through the state

estimate, we integrate the laser range-finder measurement as

a pseudo-measurement on a partition of the state space. The

psuedo measurement is computed from a Gaussian Particle

Filter (GPF) state update [13]. This technique drastically

reduces the number of particles required compared to a

vanilla implementation of a GPF, which in itself provides a

marked improvement over a conventional particle filter [19].

Our algorithm enables realtime performance in the face of

the computational limitations of the flight computer. We

quantitatively validate our algorithm on a dataset collected by

manually maneuvering the sensing components in a motion

capture environment. Finally, we demonstrate the effective-

ness of our approach experimentally on a fixed wing vehicle

being piloted in a challenging GPS-denied environment.

The process model that accompanies the GPF measure-

ment update is a based on an exponential-coordinates ex-

tended Kalman filter that is driven by inertial measurements.

We also propose a technique for estimating the uncertainty

parameters of the IMU, namely gyro and accelerometer noise

variances, that is based on a multi-step projection of the noise

compared with smoothed state estimates. When the algorithm

is used with accurate position and orientation measurements

the noise variances converge. When the method is used

with inaccurate position-only measurements we still see

convergence, but also show that with noisier measurements,

the optimization is more sensitive to initialization.
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II. PROBLEM STATEMENT

Assuming the MAV to be a rigid body and neglecting

higher-order effects such as propeller speed and time-varying

airflow over the vehicle, the state of a MAV is given by its

position and orientation and the associated linear and angular

velocities. For control purposes it is convenient to represent

the velocities in body coordinates. Thus the goal of the

filter is to estimate the quantities
[

ωT
b vTb R ∆T

]T

where ωb =
[

p q r
]T

is the angular velocity in body

coordinates, vb =
[

u v w
]T

is the linear velocity in

body coordinates, R is the rigid body orientation rotation

matrix, and ∆ =
[

∆x ∆y ∆z

]T
is the translation

vector from the origin in global coordinates to the origin

of the body frame, expressed in global coordinates.

We assume a set of inertial measurements consisting of

3-axis acceleration, 3-axis angular rate measurements, and

exteroceptive measurements consisting of planar laser range

scans. Further, we assume we have access to a 3D map of

the environment represented as an occupancy grid.

III. IMU PROCESS MODEL

Our state estimation algorithm uses an Extended Kalman

Filter (EKF) to estimate a Gaussian distribution over system

states. The EKF process model is based on a discrete time,

nonlinear discrete transition function:

xt+1 = f(xt, ut, wt) (1)

where xt is the system state vector, ut is the input vector to

the system, and wt is a random disturbance drawn from a

normal distribution N(0, Q). The EKF tracks the state at time

t as a Gaussian distribution with mean µt and covariance Σt.

These first two moments are propagated forward according

to:

µ̄t+1 = f(µt, ut, 0) (2)

Σ̄t+1 = AtΣtA
T
t +WtQWT

t (3)

where µ̄ and Σ̄ denote predicted quantities before a measure-

ment update has occurred, and At and Wt are the appropriate

partial derivatives of f .

A. Exponential Coordinates Attitude Uncertainty

We track orientation uncertainty in perturbation rotations

in the body frame. If the true orientation is given by the

rotation matrix R, we can write R = R̂R(χ) where R̂ is the

estimated orientation and R(χ) = eχ
∧

is the error rotation

matrix. χ ∈ ℜ3 is the perturbation rotation about the body

axes. We use the ∧ symbol to the right of a vector to denote

the skew symmetric matrix formed as:

χ∧ =





0 −χ3 χ2

χ3 0 −χ1

−χ2 χ1 0



 (4)

Taking the matrix exponential of a skew symmetric matrix

returns a rotation matrix corresponding to a rotation of |χ|
about the axis defined by χ where χ is referred to as the

exponential coordinates of rotation.

In our expression for the true orientation, R(χ) post

multiplies R̂ which puts the perturbations in the body frame.

Since the error is parameterized by χ, the covariance can be

tracked in a 3×3 matrix Σχ. The covariance can be thought

of as cones of uncertainty surrounding the body frame axes

defined by the columns of R̂. A sketch of this uncertainty is

shown in figure 2 for the covariance (in degrees):

Σχ =





32 0 0
0 52 0
0 0 152



 (5)

This choice of coordinates for the filter error is desirable

since fundamentally rigid body orientation, denoted mathe-

matically as the special orthogonal group (SO3), has three

degrees of freedom. While any three-element representation

is provably singular for some orientation, more commonly-

used parameterizations (i.e., quaternions or rotation matrices)

will have constraints between the elements of the representa-

tion. Thus a linearized filter covariance over the parameters

will not be full rank. Numerical errors pose the constant

threat of creating negative eigenvalues, and thus causing

the estimator to diverge. Furthermore, an efficient linearized

measurement update as is commonly-used in Gaussian filters

does not respect the constraints and thus does not map onto

SO3. A renormalization scheme could be used after every

update, but at any given time the representation can be

arbitrarily poor [20].
As we will see, the attitude uncertainty representation

is agnostic to the actual underlying orientation integration

and tracking. Quaternions and rotation matrices are easy to

update based on using χ in the estimator state vector µ.

Fig. 2. This figure shows the uncertainty representation in body axes. We
see that high variance on the z axis perturbation maps into large motions for
the x and y bases. In our implementation we use a Forward-Left-Up (body),
East-North-Up (global) (FLU, ENU) coordinate system as opposed to the
traditional aerospace frame of Forward-Right-Down, North-East-Down.

B. Process Equations

The equations of motion for a rigid body are given by:

ω̇b = J−1(−ωb × Jωb + τb) (6)

v̇b = −ωb × vb +RT ḡ + ab (7)

Ṙ = Rω∧

b (8)

∆̇ = Rvb, (9)
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where τb is the torque applied to the body and ab is the accel-

eration in body coordinates. Since the IMU provides accurate

measurements of ωb and ab, we follow the commonly-used

technique of omitting ωb from the state, neglecting equation

6, and treating the IMU measurements as inputs to the filter.

For the quantities used in equation 2 we have

x =
[

vb χ ∆
]

(10)

u =
[

ugyro uaccel

]

(11)

w =
[

wgyro waccel

]

(12)

Combining this state representation with equations 7-9.

fc(xt, ut, wt) =





v̇b
Ṙ

∆̇



 (13)

=





−ωb × vb +RT ḡ + guaccel

Ru∧

gyro

Rvb



 (14)

Taking the appropriate partial derivatives we get:

∂v̇b
∂x

=
[

−ω∧

b (RT ḡ)∧ 0
]

(15)

∂χ̇

∂x
=

[

0 −ω∧

b 0
]

(16)

∂∆̇

∂x
=

[

R −Rv∧b 0
]

(17)

for a continuous dynamics linearization of:

Ac =
∂f

∂x
=





−ω∧

b (RT ḡ)∧ 0
0 −ω∧

b 0
R −Rv∧b 0



 (18)

and for the input vector we have:

∂v̇b
∂u

=
[

v∧b gI
]

(19)

∂χ̇

∂u
=

[

I 0
]

(20)

∂∆̇

∂u
=

[

0 0
]

(21)

Wc =
∂f

∂x
=





∂v̇b

∂u
∂χ̇
∂u
∂∆̇
∂u



 . (22)

While more sophisticated approximations could be used, we

construct the discrete quantities for the filter f , At, and Wt

using Euler integration:

f(xt, ut, 0) = xt + fc(xt, ut, 0)dt (23)

At = I +Acdt (24)

Wt = Wcdt. (25)

We integrate the attitude separately as

Rt+1 = RtR(u∧

gyro) (26)

IV. LASER MEASUREMENT UPDATE

While the EKF is effective for propagating the first two

moments of the nonlinear dynamics through our IMU equa-

tions of motion, it is not well-suited to integrating laser

measurements from unstructured 3D environments. Using

such sensors directly in an EKF requires the extraction and

correspondence of features such as corners, and line seg-

ments from the sensor measurements, an error prone process

that limits the applicability of the algorithms to environments

with specific structure [7]. In contrast Monte-Carlo tech-

niques are widely used in laser-based localization algorithms

because they allow for the lidar range measurements model

to be used directly in the measurement function [19].

While particle filters are efficient enough for effective

use in localizing a 2D mobile robot, they require too many

particles to be used for the estimation of a 3D MAV. For-

tunately, we can obtain the best aspects of both algorithms,

and a significant speedup can be realized by employing a

hybrid filter that uses an IMU-driven EKF process model

with pseudo-measurements computed from Gaussian Particle

Filter (GPF) laser measurement updates [13].

A. Gaussian Particle Filters

In its standard form, the GPF maintains a Gaussian distri-

bution over the state space given a measurement history given

by P (xt|z0:t) = N(xt;µt,Σt). However, at each iteration

of the filter, particles are used to incorporate nonlinear

process and measurement models. To compute P (xt+1|z0:t)

a set of samples {x
(j)
t }Mj=1 is drawn from N(µt,Σt) and

the samples are then propagated through the process model

f(xt, ut, wt). To perform the measurement update the sam-

ples are weighted according to the measurement model

w
(j)
t = P (zt|x

(j)
t ). The updated Gaussian at the end of an

iteration of the filter is then obtained as the weighted mean

and covariance of the samples

µt+1 =

∑M
j=1 w

(j)
t x

(j)
t

w
(j)
t

(27)

Σt+1 =

∑M
j=1 w

(j)
t (x

(j)
t − µt+1)(x

(j)
t − µt+1)

T

w
(j)
t

. (28)

Assuming the underlying system is linear-Gaussian, the filter

is shown to approximate the true distribution arbitrarily well

with a large number of samples. The GPF filter differs from

a standard particle filter by maintaining a unimodal Gaussian

distribution over the posterior state instead of the arbitrary

(possibly multi-modal) distribution represented by the set of

particles in a conventional particle filter.

A straightforward implementation of the GPF for state

estimation using a laser on a MAV is impractical and

inefficient for two reasons:

1) IMU dynamics are well-approximated by linearization

as evidenced by the widespread use of EKFs in GPS-

IMU state estimation.Thus, a particle process model

adds significant computational burden and sampling

error, without significantly improving the estimate of

the posterior density.
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2) The IMU filter maintains additional states to track

velocity and IMU biases, however the laser measure-

ments are only a function of the position and orienta-

tion, parameterized by ∆ and χ in our formulation.

In fact, most of the orientation information in the

measurement exists in the plane of the laser contained

in χz .

To address the first issue we only use the GPF to perform

the measurement update, and instead of propagating sam-

ples through the measurement function, we sample directly

from the prior distribution returned by the EKF after the

process step, N(µ̄, Σ̄). To address the second issue above

we explicitly partition the state according to independence

relationships in the measurement function. We perform a

standard GPF measurement update on the partitioned state

and use this to compute a pseudo-measurement which is then

used to update the full state.

B. Partitioned State Update

The state is partitioned as,

xt =
[

xm
t xp

t

]

, (29)

where xm
t ∈ ℜk is the part of the state that affects the

measurement, and xp
t ∈ ℜn−k is independent from the

measurement. More formally we assume our measurement

function has the form

zt = h(xm
t , vt), (30)

permitting the independence factorization

P (zt|x
p
t , x

m) = P (z|xm). (31)

We can similarly partition the covariance

Σ̄t =

[

Σ̄
(m2)
t Σ̄

(mp)
t

Σ̄
(pm)
t Σ̄

(p2)
t

]

. (32)

To perform the measurement update we draw samples

{x
m(j)
t }Mj=1 from N(µ̄m

t , Σ̄m
t ). The samples are weighted

with the measurement function in equation 31. From these

weighted samples we can compute an update for P (xm
t |z0 :

zt) using the conventional GPF weighted mean and covari-

ance as in equations 27 and 28. The key idea is to then

use the GPF update on the state variables that affect the

measurement to propagate a Kalman update to the rest of

the state.

To perform a Kalman measurement update we need to

know the measurement value zt, the covariance of the

measurement R, and the observation matrix C. Firstly, we

set C as a selector matrix for the measurement part of the

state

C =
[

Ik 0n−k

]

. (33)

A measurement update on xm would proceed as:

Km = Σ̄m
t (Cm)T (CmΣ̄t(C

m)T +R)−1 (34)

µm
t = µ̄m

t +Km(zt − Cmµ̄m
t ) (35)

Σm
t = (I −KmCm)Σ̄m

t (36)

Plugging in the identity matrix for Cm, the above equations

can be solved for Rt

Σm
t = Σ̄m

t − Σ̄m
t (Cm)T (CmΣ̄t(C

m)T +Rt)
−1Σ̄m

t (37)

Rt = (Σ̄m−1

t − Σ̄m−1

t Σm
t Σ̄m−1

t )−1 − Σ̄m
t (38)

= (Σm−1

t − Σ̄m−1

t )−1 (39)

where we make use of the matrix inversion lemma between

equations 38 and 39.

Using Rt we can now solve for the Kalman gain that

would have produced the same change between our prior

and posterior covariance using equation 34 and then recover

the actual measurement that would have produced the same

change in the mean of prior vs. posterior distributions:

zt = Km−1

(µm
t − µ̄m

t ) + µ̄m
t . (40)

A Kalman gain for the entire state can then be computed

using Rt and zt, and a standard Kalman measurement update

performed.

The posterior distribution quantities µm−1

t and Σm−1

t are

readily available from the GPF measurement update on the

measurement part of the state vector. Naively one might

use the Gaussian prior from which the samples were drawn

to evaluate equations 39 and 40. However, the quantities

we care about, Rt and zt, are obviously sensitive to the

difference between the prior and posterior mean and covari-

ance. With a finite number of samples there will be some

error between the distribution described by the sample set

{x
m(j)
t }Mj=1 and the Gaussian prior. This error will carry over

to the weighted sample set which approximates the posterior.

We can compensate by using the mean and covariance of the

prior sample distribution instead of our analytic expressions

for µ̄m
t and Σ̄m

t . In practice, this substitution makes an enor-

mous difference, particularly with low numbers of particles

(which is highly desirable in a real-time application).

Finally, we note that the solutions for Rt and zt hinge on

the invertibility of Cm which is a proxy for the invertibility

of our measurement function h in equation 30 with respect

to xm
t . It can be difficult to know a priori if the measurement

is well conditioned or invertible. If it is not (i.e., if the

measurement does not actually contain information about

some piece of xm
t ) then the Rt matrix may not be positive-

definite, leading to a filter divergence. Thus it is necessary in

practice to perform an eigenvalue decomposition on Rt and

set any negative eigenvalues to a large constant (implying

no information gain along the corresponding eigenvector)

and then reconstruct the matrix. This step also protects

the algorithm from negative eigenvalues entering through

sampling errors.

C. Laser Localization

The likelihood evaluation proceeds according to standard

techniques used in 2D localization. We blur the a 3D

occupancy map stored as an OctoMap [21] using a Gaussian

kernel around occupied cells. To perform particle measure-

ment updates we project the current scan into the map using

the sampled particle state, and sum the log-likelihood of the

reached cells before exponentiating to obtain a probability

with which to weight the particles.
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An interesting question is the appropriate partitioning of

the state vector for the updates described in the previous

section. The use of planar LIDARs to localize in the plane

is ubiquitous, suggesting that when working in 3D, laser

range scans should at least contain information about the xy
plane and χz (orientation about the yaw axis of the vehicle).

However, in general, a planar slice of a 3D environment

may contain some information about the full orientation, but

populating the 6D pose space parameterized by χ and ∆ with

particles may produce limited extra information relative to

the computational cost incurred, especially because the direct

formulation for our filter based on exponential coordinates,

is capable of inferring attitude from accurate position (xyz)

measurements. We investigate different choices for xm in

our experiments.

V. IDENTIFYING THE PROCESS NOISE PARAMETERS

Due to the symmetry of the inertial sensors in the IMU, we

assume the process noise covariance Q is a diagonal matrix

populated as

Q =

[

qgyroI3 0
0 qaccelI3

]

(41)

and qaccel and qgyro are the parameters we wish to identify.

Two issues lead to difficulty with finding these values.

First, the way the noise projects onto the state changes

with the time-varying Wt matrix such that the Q matrix

cannot be recovered in closed form simply by summing the

outer product of sampled error. More importantly we cannot

depend on the availability of ground truth measurements

of the measured quantities, since even accurate positioning

systems do note directly measure acceleration and angular

rate. Further, the behavior of the sensor may be different

under actual flight conditions due to vibration and loading

effects and thus the values obtained in a static test may not

hold.

Nonetheless it is desirable that the model parameters, and

especially the process noise parameters, be accurate. For

planning purposes we must be able to predict distributions

over future states to guarantee safe trajectories. Within the

context of state estimation and Monte-Carlo localization, as

we describe in section IV-C, it is important that an accurate

covariance of the state estimate be maintained when sensor

data is sparse or absent, such that the state estimate can be

can be properly distributed to obtain measurements when

they become available.

While we do not have access to ground truth acceleration

and angular rate with which to estimate the noise parameters,

we can post-process data using a Kalman smoothing algo-

rithm to obtain a state history X =
[

x̂0 x̂1 . . . x̂T

]

with the error associated with each smoothed state estimate

given by

Γt = E
[

(x̂t − xt)(x̂t − xt)
T
]

(42)

The key idea in our approach is in projecting the process

noise forward over multiple time steps such that the process

noise dominates the error in the smoothed estimate, thus

allowing us to treat the smoothed estimate as ground truth.

This works because the IMU process equations are neutrally

stable and thus the perturbing noise results in unbounded

growth in covariance without position updates. The error on

the smoothed estimate (with position updates), on the other

hand, must be bounded (even if the smoothing occurs with

incorrect noise parameters) since the system is observable.

Additionally, by projecting the noise forward over multiple

steps, the parameters we identify will be suitable for use in

planning algorithms that require open-loop predictions [3]

and the parameters will work with intermittent measurement

functions as may be the case for laser localization in sparse

environments.

Using the linearized dynamics from the EKF we can

project the filter covariance forward N steps by repeatedly

applying equations 3 3. Neglecting the error on the smoothed

estimate, we obtain the expression:

E
[

(x̂t+N − x̂t)(x̂t+N − x̂t))
T
]

= Σt,N (43)

=

N−1
∑

i=0

Gt+i,NQGT
t+i,N (44)

where Gt,N =
∏t+N−1

j=t+1 AjWt. This is an important quantity

for our noise identification algorithm because it maps the

noise at each time step onto the state vector at time t+N .

We can see that for identifying characteristics of the process

noise, At must be neutrally stable and Wt must have full

column rank. If At is highly unstable, the Σt,N will be overly

sensitive to the noise values wi for small i, whereas if At is

highly stable, Σt,N will be dominated by larger values of i
and thus the forward projection offers little benefit. However,

many robotic systems, including our IMU dynamics, exhibit

approximately neutrally stable behavior.

For neutrally stable systems, as N gets large we expect

Σt >> Γt. We can then divide up the dataset X to get

M = T/N samples from prediction distributions obtained

by subtracting the state at time tend = iN + N − 1 from

the state at time tbegin = iN for i ∈ [0,M − 1]. This gives

us M samples yi = xtend
− xtbegin

drawn from distributions

N(0,Σtbegin,N ) = P (xtend
|xtbegin

). We have a joint likelihood

function for our data given the parameters of Q as:

P (Y |x0, Q) =
M−1
∏

i=0

P (xiN+N−1|xiN , Q). (45)

We would like to maximize this probability for which we

use the log-likelihood function,

l(Y |x0, Q) = −
1

2

M−1
∑

i=0

log |Σi|+ yTi Σiyi. (46)

From an intuitive standpoint we are optimizing for the q
parameters that would produce the observed drift away from

the smoothed estimate given by the samples yi.
We setup and solve the optimization using standard nonlin-

ear programming techniques. Specifically we use the interior

point method implemented in Matlab to solve for the maxi-

mum likelihood values of qgyro and qaccel. These new values

are then used to obtain the Kalman smoothed trajectory, and

the process is repeated until convergence.

To identify the noise parameters of the IMU we flew

our experimental vehicle (described below) outdoors with

a low cost uBlox GPS unit. We also collected a dataset in
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TABLE I

NOISE PARAMETER VALUES

Source Gyro Noise (deg/s) Accelerometer Noise (g)
Vicon Optimization 0.35 0.0042
GPS Optimization 0.34 0.0182
Manufacturer 0.2 0.005
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Fig. 3. This figure shows the predicted normed error and the actual normed
deviation from the smoothed estimates as a function of lookahead time
for the optimization run on both the vicon and GPS datasets. With the
optimized values we can accurately predict uncertainty for both estimation
and planning purposes.

a high accuracy indoor motion capture system. Optimized

noise parameters for a lookahead time of 20 seconds are

shown in table I with the manufacturer specified values for

comparison.

The optimization on the vicon dataset converges quickly

and consistently. However, when the optimization is per-

formed on the GPS dataset the optimization is more sensitive

to initial conditions and window size. The vicon system

measures attitude directly, thus the smoothed attitude es-

timate is dominated by the actual measurement. With the

GPS dataset, attitude must be inferred from position updates

which means the attitude estimate will be more strongly

correlated with the IMU noise, thus making it more difficult

find the underlying noise parameter. Additionally, the GPS

measurements are subject to time-varying bias which is not

modeled in our filter. Nonetheless, the optimization for vicon

and GPS converge to nearly identical values for the gyro

noise at at 20 second window. The relative sensitivity to the

window size for the GPS optimization can be seen in figure

4.

The noise parameters in table I were used to generate the

predicted error lines in figure 3. We can see that the predicted

error for GPS and vicon are very close for orientation

as we would expect from the tabular values. In position,

the deviation is also small which is surprising given the

large difference in optimized accelerometer noise values. The

reason for this is that the positional uncertainty is largely a

function of angular uncertainty resulting in the gravity vector

being misinterpreted as lateral acceleration. This highlights

another difficulty in teasing apart the relative affect of the

0 5 10 15 20
0

0.2

0.4

q
 g

y
ro

 (
d

e
g

/s
)

Optimal IMU Noise Parameters vs. Lookahead Time

 

 

vicon

gps

0 5 10 15 20
0

0.01

0.02

q
 a

c
c
e

l 
(g

)

Optimization Lookahead time (seconds)

Fig. 4. This figure shows values for qgyro and qaccel obtained by optimizing
equation 46 for different lookahead times (values of N scaled by sampling
frequency) for both GPS and vicon. For small time the optimal noise
parameters obtained with GPS are dominated by the error in the smoothed
estimates, Γt, but we see for large N consistent values are reached. The
vicon dataset is less susceptible to this issue. It is interesting to note that
as lookahead time increases fewer “samples” are available from a dataset
of fixed size, and thus the computed noise values have higher variance,
implying some optimal lookahead window to identify the parameters.

noise parameters.

VI. EXPERIMENTAL RESULTS

Our experimental platform consists of a custom built

fixed-wing vehicle carrying a payload of a Hokuyo UTM-

30LX laser rangefinder, a Microstrain 3DM-GX3-25 IMU,

and a 1.6GHz Intel Atom base flight computer. We con-

ducted a number of flight tests in the indoor environment

shown in Figure 5(a). While we did not have access to

any sort of ground truth state estimates, we were able to

test our algorithms on real flight data. The accuracy of

our state estimates are validated qualitatively by looking

at the accurate reconstruction of the 3D environment by

reprojecting the laser points using our state estimates. One

such 3D point cloud is shown in Figure 5(b). To get a better

feel for the experiments, we invite the interested reader to

view the videos of the experiment available on our website:

http://groups.csail.mit.edu/rrg/icra12-agile-flight

To quantify the error of the state estimator, we aggressively

maneuvered the sensing payload in a high accuracy vicon

motion capture studio. While the motion of the sensing

payload will certainly be very different when the vehicle is

flying, the data allows us to evaluate our algorithms with a

ground truth comparison. These ground truth state estimates

allow us to evaluate the properties of our state estimation

algorithm. Results for different number of particles and

different partitions of the state vector are summarized in

figure 6. We can see that by not partitioning the state

and performing standard GPF updates we incur significant

computational cost in terms of number of particles to achieve

the same level of accuracy. This increase in the number of

particles is to be expected given that we are using particles

to capture the same correlations that are well captured

analytically by the Kalman pseudo-measurement update.

The experiments demonstrate the ability of our algorithm

to maintain accurate state estimates in the face of fast motion,

with linear velocities up to 9m/s, and angular rates of up to
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(a) (b)

Fig. 5. A picture of the indoor space (a) where we flew our fixed wing vehicle. The space is roughly 12 meters by 20 meters and our vehicle flies
between 6 and 10 m/s, thus aggressive maneuvering and tight turning is required to stay airborne. The trajectory flown by the vehicle is shown by the
red, green, and blue axes in (b). The quality of the state estimates is evident in the (height colored) point cloud rendered using the state estimates of our
algorithm. The floor and ceiling were cropped for visual clarity.

360 degrees per second. While a naive implementation of

the GPF measurement update correctly estimates the state

of the vehicle with a sufficient number of particles, the

required number of particles is dramatically larger than for

the partitioned state version. The naive GPF implementation

would not be able to run in realtime on board the vehicle

given the computation power available.

VII. RELATED WORK

State estimation using Kalman filtering techniques has

been extensively studied for vehicles flying outdoors where

GPS is available. A relevant example of such a state esti-

mation scheme developed by Kingston et al. [12] involves

two Kalman filters where roll and pitch are determined by

a filter driven by gyro readings as system inputs while the

accelerometer measurements are treated as a measurement of

the gravity vector, assuming unaccelerated flight. A separate

filter estimates position and yaw using GPS measurements.

This approach is representative of many IMU-based es-

timators that assume zero acceleration and thus use the

accelerometer reading as a direct measurement of attitude

(many commercially available IMUs implement similar tech-

niques on board using a complementary filter). While this

approach has practical appeal and has been successfully used

on a number of MAVs, the zero acceleration assumption does

not hold for general flight maneuvering and thus the accuracy

of the state estimate degrades quickly during aggressive

flight.

Van der Merwe et al. use a sigma-point unscented

Kalman filter (UKF) for state estimation on an autonomous

helicopter[20]. The filter utilizes another typical approach

whereby the accelerometer and gyro measurements are di-

rectly integrated to obtain position and orientation and are

thus treated as noise perturbed inputs to the filter. Our

filter utilizes this scheme in our process model, however

we use an EKF with exponential coordinates based attitude

representation instead of the quaternions used by Van der

Merwe et al.

Techniques to identify the noise parameters relevant for

the Kalman filter emerged not long after the original filter,

however the most powerful analytical techniques assume

steady state behavior of a linear time invariant system and

are thus unsuitable for the time varying system that results

from linearizing a nonlinear system [14]. More recent work

optimizes the likelihood of a ground-truth projection of the

state over the noise parameters but thus requires the system

be fitted with a sensor capable of providing ground-truth

for training. [1]. Our algorithm does not require the use of

additional sensors, or external ground truth.

Laser rangefinders combined with particle filter based

localization is widely used in ground robotic systems [19].

While planar lidars are commonly used to estimate motion

in the 2D plane, they have also proved useful for localization

in 3D environments. Prior work in our group [2], as well as

others [18], [6] leveraged a 2D laser rangefinder to perform

SLAM from a quadrotor in GPS-denied environments. The

systems employ 2D scan-matching algorithms to estimate

the position and heading, and redirect a few of the beams

in a laser scan to estimate the height. While the systems

have demonstrated very good performance in a number

of realistic environments, they must make relatively strong

assumptions about the motion of the vehicle, and the shape

of the environment. Namely, they require walls that are least

locally vertical, and a mostly flat floor for height estimation.

As a result, the algorithms do not extend to the aggressive

flight regime targeted in this paper. Scherer et al. use laser

rangefinders to build occupancy maps, and avoid obstacles

while flying fast through obstacles [17], however they rely

on accurate GPS measurements for state estimation, and do

not focus on state estimation.

In addition to the laser based systems for GPS-denied

flight, there has been a significant amount of research on

vision based control of air vehicles. This includes both fixed

wing vehicles [11], as well as larger scale helicopters [4],

[10], [8]. While vision based approaches warrant further

study, the authors do not address the challenge of agile

flight. This is likely to be particularly challenging for vision

sensors due to the induced motion blur, combined with the

computational complexity of vision algorithms.

Recently, Hesch et al. [7] developed a system that is
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Fig. 6. This figure shows the percentage of trials where the filter diverged
(a) and the mean velocity error verses the number of particles used in the
GPF (b) for different state partitions in the measurement. As expected,
the more states we use in the measurement function the more particles
are required to obtain satisfactory estimates. In a naive implementation
where the full state is used in the measurement and thus a standard GPF
update performed, we require 2000 particles to get similar performance to
a measurement update in ∆ using only 100 particles. Thus our algorithm
yields an effective 20x speedup.

similar in spirit to ours to localize a laser scanner and INS

for localizing people walking around in indoor environments.

They make a number of simplifying assumptions such as

zero velocity updates, that are not possible for a micro air

vehicle. Furthermore, they model the environment as a set

of planar structures aligned with one of 3 principle axes,

which severly limits the types of environments in which their

approach is applicable. Our system uses a general occupancy

grid representation which provides much greater flexibility

of environments.

VIII. CONCLUSION

In this paper we presented a state estimation algorithm

for a fixed wing vehicle based on an IMU and laser range

scanner. Our algorithm provides a novel extension of the

Gaussian particle filter and an exponential coordinates lin-

earization of the IMU dynamics equations. We have demon-

strated the performance of our algorithms on two challenging

datasets. The quantitative analysis in motion capture clearly

shows the advantages of our extensions to the Gaussian

particle filter algorithm, while the accurate map generated

during the flight tests demonstrate the absolute accuracy of

our algorithms.
Integrating the state estimation algorithm with planning

and control algorithms to perform closed-loop flight indoors

remains for future work. We are particularly interested in

using the state estimates in our previously developed partially

observable planning frameworks.
In addition to the planning and control extensions, in-

vestigation of other sensing modalities such as vision are

of great interest. We believe that the filtering framework

developed for the laser rangefinder will extend to incorporate

additional measurement types, thereby further improving the

capabilities of our system.
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